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1. INTRODUCTION

Chemical graph speculation stands as a captivating realm within mathematical chemistry, dedicated to 
the nuanced analysis of chemical characteristics, with atoms as vertices and chemical bonds as edges, The 
graphical representation unveils the intricate architecture of chemical complexes. This unique approach 
employs mathematical concepts, providing a lens to assess and fathom chemical properties and reactions with 
precision [1].

The realm of Chemical graph theory, with its far-reaching applications in drug development, materials science, 
and various branches of chemistry, lays a robust foundation for the exploration of chemical compounds and 
their nuanced characteristics [2]. It serves as a guiding beacon for chemists, enabling the accurate prediction 
of the chemical behaviour of a diverse array of substances across all three thermodynamic forms.

In this exploitative journey, substance graphs emerge as invaluable tools, unveiling the spatial arrangement 
of atoms within a molecule. They play a pivotal role in distinguishing structural isomers of compounds. The 
consequential numbers derived from the topological intricacies of these graphs are known as topological 
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indices [3, 4]. Beyond being mere numerical entities, these indices offer a wealth of information on the 
chemical and structural properties of compounds. Their significance extends to influencing biological activity, 
solubility, stability, and reactivity, making them indispensable in diverse applications such as drug design, 
materials research, and chemical informatics [5, 6].

To delve deeper into this fascinating world, the classification of chemical structures involves the computation 
of topological indices of molecular structures. These indices, rooted in various graph properties, including the 
count of non-incident edges, degree distribution, and spectrum, contribute to a comprehensive understanding 
of a compound’s nature [7]. Notable examples like the Hosoya index, Estrada index, Randic connection index, 
and Zagreb indices further enrich the tapestry of topological indices [8, 9].

In essence, this intricate interplay of mathematical chemistry and graph theory unravels a tapestry of molecular 
intricacies. The significance of this exploration resonates across disciplines, impacting drug design, materials 
science, and chemical informatics. Beyond numerical abstractions, topological indices become the key to 
deciphering the language of molecules, unlocking insights that reverberate in the advancement of scientific 
frontiers.

The calculation of the topological index TI(G) follows a well-defined procedure:

TI(G) = F
dc!E(G)
| (C (d),C (c))                                                                 (1)

Here, the symbol represents the summation across all pairs of neighboring vertices δγ in the edge set E(G). The 
function F is chosen based on the specific requirements of the analysis [14]. Historically, critical topological 
indices have proven invaluable in characterizing the structures of numerous compound complexes. However, 
the field is still evolving, with the continual proposal of new indices that await thorough testing to establish 
their correlations with various substantial characteristics, substance reactivity, or biological activity. The 
quest for novel topological indices is propelled by the aspiration to enhance our understanding of molecular 
structures and their implications in diverse domains.

Kaom et al. employed a valency-based topological descriptor, successfully unravelling the electrical and 
structural intricacies of diverse hexagonal star networks [15]. Nadeem et al. delved into topological analysis to 
scrutinize the connectivity and stability of metal-organic systems, showcasing the versatility of this approach 
in understanding complex molecular architectures [1, 16]. In a parallel exploration, Ahmad et al. conducted 
an insightful study on the energy variations in phenylene and anthracene molecules, crucial components in 
materials science and organic electronics. Their findings underscored the influence of molecular conformations 
and functional groups on energy profiles [17]. Echoing this sentiment, Sun et al. generated diverse topological 
indices to capture physico-chemical features in the chemical graph of polyphenylene, contributing to a holistic 
understanding of its molecular characteristics [18].

Beyond individual molecular assessments, co-indices such as Randic and Zagreb offer a versatile tool kit for 
calculating pi electron energy and unravelling geometric properties like inter atomic lengths and bond angles in 
any chemical compound [19, 20]. These co-indices extend their utility to the analysis of various physiochemical 
properties, providing nuanced insights into molecular structures and characteristics [21]. Zhang et al., through 
thermodynamic modelling and experimental data, explored the temperature-dependent heat of formation and 
entropy of cerium oxide (CeO2), revealing dynamic characteristics influenced by temperature fluctuations 
[21]. Meanwhile, Gao et al. applied topological indices, including node edition, in the study of nano tubes, 
unravelling unique structural nuances [22]. In a parallel endeavour, Gao et al. employed the edge set division 
technique to calculate multiplicative atom-bond connectivity indices for key nano materials, further expanding 
the spectrum of applications for topological indices in nano-science [23]. The collective efforts showcased 
here underscore the versatility and applicability of topological indices across diverse domains, from molecular 
electronics to nano materials research. This mathematical modelling approach is particularly valuable in 
industrial contexts, as it helps interpret Kevlar’s structural behaviour and properties such as tensile strength, 
thermal stability, and chemical resilience.

In this study, our primary objective is to explore and compute advanced topological co-indices derived from 
the molecular graph of Kevlar, with the aim of establishing their correlation with the compound’s physical and 
structural properties. By employing mathematical modelling, we seek to provide a time-efficient and analytically 
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robust alternative to experimental methods for analysing Kevlar’s molecular behaviour. Additionally, we 
aim to visualize these indices through comparative graphical representations, offering intuitive insight into 
Kevlar’s unique topological characteristics. This approach not only broadens the understanding of Kevlar at 
the molecular level but also contributes to the growing field of chemical graph theory by demonstrating the 
practical relevance of co-indices in analysing industrially significant material.

2. APPLICATIONS

To date, critical topological indices have proven indispensable in characterizing the designs of various 
compound complexes. However, many proposed indices await thorough testing to establish their correlations 
with diverse substantial characteristics, substance reactivity, or biological action. In a notable exploration, 
Kaom et al. applied a valency-based topological descriptor, successfully elucidating the electrical and structural 
characteristics of diverse hexagonal star networks [15]. Similarly, Nadeem et al. employed topological analysis 
to scrutinize the connectivity and stability of metal-organic systems, showcasing the versatility of this approach 
in understanding complex molecular architectures [1, 16].

In a parallel endeavor, Ahmad et al. delved into the energetic landscape of phenylene and anthracene molecules, 
pivotal in materials science and organic electronics. Their insightful study unveiled dependencies on molecular 
conformations and functional groups, offering valuable insights into energy variations [17]. Correspondingly, 
Sun et al. harnessed topological indices to represent physico-chemical features of polyphenylene, contributing 
to a comprehensive understanding of its molecular characteristics [18].

A myriad of co-indices, such as the Randic and Zagreb co-indices, have emerged as versatile tools for 
calculating pi electron energy and unravelling geometric properties like inter atomic lengths and bond angles 
in chemical compounds [19, 20]. These co-indices extend their utility to the analysis of diverse physicochemical 
properties, offering nuanced insights into molecular structures and characteristics [21]. Zhang et al., through 
thermodynamic modelling and experimental data, delved into the temperature-dependent heat of formation 
and entropy of cerium oxide (CeO2), revealing dynamic characteristics influenced by temperature fluctuations 
[21]. In the realm of nanotubes, Gao et al. computed node edition of topological indices, showcasing their 
applicability in nano-science[22]. In a complementary study, Gao et al. applied the edge set division technique 
to calculate multiplicative atom-bond connectivity indices for key nanomaterials, further expanding the 
spectrum of applications for topological indices in nanoscience [23].

This comprehensive implementation of topological indices not only showcases their diverse applications but 
also underscores their pivotal role in unravelling molecular intricacies across varied scientific domains. Despite 
the significant advancements in the application of topological indices to a wide range of molecular graphs, a 
noticeable gap remains in their use for analysing high-performance polymers like Kevlar. While previous 
studies have focused on simple hydrocarbons, nano structures, or small organic molecules, they often overlook 
large, rigid, and industrially significant polymers. Moreover, the majority of existing research employs basic 
indices without extending the analysis to co-indices that can capture finer structural distinctions, such as 
branching, degree-based interactions, and atom-bond connectivity variations. To the best of our knowledge, 
no comprehensive study has yet applied advanced co-indices such as ABC, GAC, and GA5 specifically to 
the chemical graph of Kevlar. This study addresses this gap by systematically deriving and analyzing a broad 
set of topological co-indices tailored to Kevlar’s structure, thereby offering a more nuanced and predictive 
understanding of its physicochemical properties.

3. PRELIMINARIES

Suppose P1 represents the molecular structure of Kevlar Poly(azanediyl-1,4-phenyl eneazanediyl terephthaloyl)  
[24]. The atoms in this molecule are depicted by the node (vertex) set V(P1), and the collection of edges is 
represented as E(P1) . d  and c  denote two adjacent vertices, and the total number of edges connected to a 
vertex is known as the degree of the vertex, denoted as Γδ. The complement of the graph is denoted as P1  with 
the vertex set V(P1)  and edges dc ! E(P1)  whenever dc g E(P1) .

The 1st and 2nd Zagreb indices are denoted as M1 (P1)  and M1 (P2) , and their revised formulas, transformed 
into co-indices, are as follows [25, 26]:
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MZ1(P1) = dc ! E(P1)| (Cd+ Cc)                                                     (2)

The second Zagreb index of the complement of graph MZ 2(P1)  is defined as follows:

MZ 2(P1) = dc ! E(P1)| (Cd# Cc)                                                     (3)

Ghorbani defined the multiple Zagreb indices and multiplicative co-indices as [27][28][29]:

) 1(P1) = dc ! E(P1)% (Cd+ Cc)                                                      (4)

The second multiplicative co-index of the complement of graph ) 2(P1)  is defined as follows:

) 2(P1) = dc ! E(P1)% (Cd# Cc)                                                      (5)

For the diagram P1 , the forgotten index is calculated through FC (P1)  and is given by:

FC (P1) = (
dc!E(P1)
| Cd2 + Cc2)                                                                   (6)

Estrada [30] and Fath-tabar [31] established the ABCI (P1)  index inequalities. Das and Trinajstic [32]
constructed the GAC(P1)  index for a substance tree. The Atomic Bond Connectivity co-index [26]is 
formulated as follows:

ABCI (P1) = (Cd $ Cc)
(Cd+ Cc-2)

dc!E(P1)
|

                                                  (7)

GAC(P1) = (Cd+ Cc)
2 (Cd $ Cc)

dc!E(P1)
|

                                                             (8)

The general Randic index [10] is described as the general Randic Co-index [26], formulated as follows:

Lemma [33] states, “Let P1 be an associated graph of order n. Let Pu be the set of vertices of level u, and wuv be 
the number of edges linking the vertices of degree u and v. Then,”

4. KEVLAR STRUCTURE

Kevlar, scientifically known as para-aramid, stands as a remarkable artificial filament renowned for its exceptional 
durability and fire resistance. This synthetic polymer shares its aramid classification with counterparts like 
Nomex and Technora, collectively forming a family of robust materials. Its widespread applications span from 
reinforcing bicycle tires to fortifying bulletproof vehicles, showcasing its versatility and indispensability in 
various industries.

Kevlar might be able to withstand the outstanding strength due to a huge number of inter-chain links in the 
molecular chain. This great power of the tensile strength of the polymer is due to the complex structure of 
bonds of hydrogen between neighbouring molecules. These connections are formed by the reaction of the 
carbonyl groups and the NH centers, giving a strong network that scaffolds the material with high strength.

In addition to hydrogen bonding, the second important source of strength in Kevlar is aromatic stacking of 



5

Synergy: International Journal of Multidisciplinary Studies

adjacent strands. These are interactions of aligning aromatic rings in the molecule. This results in a stacking 
effect. This lamination also increases the strength of the entire material, and this is why it is a favorite to use in 
industries where extra tensile and mechanical strength is an essential requirement.

Kevlar structural strength is created by complex level hydrogen intermolecular bonding and aromatic 
intermolecular stacking interactions. Such molecular properties do not only render it with notable tensile 
strength but also allow its use in a variety of ways across many industry branches.

5. RESULTS FOR CHEMICAL GRAPH

A unit cell of Kevlar is shown in Figure 1 (a), and its molecular structure is also shown on the right. The 
structure consists of a total of 28n vertices and 30n − 1 edges. The degrees of the vertices are labeled as 
v1, v2, and v3. Further details about the degrees of vertices and edges are provided in Table 1 and 2.

Figure 1: (a) unit cell of Kevlar molecule and (b) long chain of Kevlar

5.1 Vertex classes:

Table 1: Classes of vertices are shown

n 1 2 3 4 5 Rate or frequency Classes of vertices
v1 12 24 36 48 60 12n n1

v2 2 2 2 2 2 2 n2

v3 14 30 46 62 78 16n − 2 n3

5.2 Degree of edges

Table 2: Degree of edges is represented

(Γδ, Γγ) 1 2 3 4 5 Frequency Class of edge
(1, 2) 2 2 2 2 2 2 w12

(1, 3)

(2, 3)

10

2

22

2

34

2

46

2

58

2

12n − 2

2

w13 w23

(3, 3) 15 33 51 69 87 18n − 3 w33

Using Lemma from [33], we will locate the preliminary outcome for Γδ = 1 and Γγ = 2:

w 12  = n1n2−w12 

w 12  = 12n × 2 − 2 

w 12  = 24n − 2
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For Γδ = 1 and Γγ = 3:

w 13  = n1n3−w13

w 13  = 12n × (16n − 2) − (12n − 2)

w 13= 192n2 − 36n + 2

For Γδ = 2 and Γγ = 3:

w 23  = n2n3−w23

w 23  = 2(16n − 2) − 2

w 23  = 32n − 6

For Γδ = 3 and Γγ = 3:

w 33  = n3n3−w33 w33 = 12n × 2 − 2

w 33  = (16n − 2)2 − (18n − 3)

w 33  = 256n2 − 82n + 7

5.3 First Zagreb Co-index

5.4 Second Zagreb Co-index:

5.5 First multiplicative Zagreb Co-index:
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5.6 Second multiplicative Zagreb Co-index:

5.7 Forgotten topological Co-index:

5.8 Atom bond connectivity topological Co-indices:

5.9 Geometric arithmetic topological Co-indices:

Table 3: Comparison of M¯Z1(P1), M¯Z2(P1), Λ̄ 1(P1), and Λ̄ 2(P1)

n MZ 1 (P1) MZ 2 (P1) ) 1 (P1) ) 2 (P1)

1 1,914 2,297 5,888,900,160 5,300,010,144
2 8,422 10,331 581,249,839,680 523,124,855,712
3 19,538 24,125 7,596,507,240,000 6,836,856,516,000
4 35,262 43,679 45,664,085,160,000 41,097,676,644,000
5 55,594 68,993 181,329,815,177,280 163,196,833,659,552
6 80,534 100,067 556,048,816,580,160 500,443,934,922,144
7 110,082 136,901 1,428,945,848,930,880 1,286,051,264,037,792
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Figure 2: Comparison of first Zegreb index and second 
zegreb index

Figure 3: Comparison of first and second multiplicative 
Zegreb Co-indices

Figure 4: comparison of Geometric Arithmetic, Atomic Bond and Forgotten Co-indices

6. GOMETRIC RANDIC TOPOLOGICAL CO-INDICES:
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Figure 5: comparison of Geometric Arithmetic, Atomic 
Bond and Forgotten Co-indices

Figure 6: Evaluation of Randic Co-index for a = 1/2anda 
= −1/2

6.1 Comparison

We compare here the values for MrZ1 (P1) , MrZ2 (P1) , Kr 1 (P1) and Kr 2 (P1) in table 3. Additionally, in Table 
4, we present a comparison for FrC (P1) , ArBCI(P1) , and GrAC(P1) . Furthermore, in Table 5, we explore 

the relationships of the Randic Co-index for the values d = 1, d = -1, d = 2
1 , and d = -2

1   for the 
Kevlar structure is done and in Table 5 relationship of Randicc Co-index for1, 1, 1/2and( 1)/2 for Kevlar 
structure.

6.2 Physico-Mathematical Analysis and Practical Implications of Kevlar: Unveiling the Science 
Behind Extraordinary Properties

Kevlar, also known as paraaramid, stands as a testament to the convergence of chemistry and physics, 
showcasing its remarkable properties through a combination of intricate molecular structure and practical 
applications. This polymeric material, formally Poly(azanediyl-1,4-phenyl eneazanediyl terephthaloyl) [24], is 
more than just a substance; it’s a marvel of scientific ingenuity.

−	 −
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Synthesis and Structure:

Kevlar’s journey begins with a meticulous condensation procedure involving the monomers 1,4- 
phenylenediamine and terephthaloyl chloride. This chemical ballet creates a robust molecular structure, 
forming the backbone of Kevlar’s legendary strength and resilience.
Versatility in Applications:

Designed in various grades to cater to specific needs, Kevlar finds itself at the heart of diverse applications. 
From manufacturing to ballistic defense, Kevlar plays a pivotal role in crafting cables, supports, and protective 
gear. Its versatility extends to sporting goods like canoes, bike tires, and rackets, making it an indispensable 
material in various industries.
Mathematical Insights:

The betrothal between mathematics and physics can better explain the characteristics of Kevlar. In keeping 
with the boiling points, through the Randic index, finding correlation with the Kovats index, which is 
intricately linked to boiling points, is possible. On the other hand, ABC co-index offers a measure of stability 
in a compound. Optical details of the genome are disclosed through the physico-mathematical analysis of 
connections which may be nonlinear and even chaotic within the molecular structure of Kevlar.
Topological Co-Indices:

Topological co-indices are efficient to derive and open the unlock to the discovery of beneficial physical 
advantages. These co-indices are in addition to the fact that they are time and cost saving methods of testing 
the properties of Kevlar that have gone beyond the standard fields of experimentation. Examining indexes 
like the second multiplicative Zagreb co-index and Randic co-index of δ = −1, we can get understand the 
behaviour of the material.
Practical Implications:

A study of physico-mathematical complexity of Kevlar gives a guideline on the prediction of Kevlar boiling 
and melting temperature, stability, strain energy, surface tension, vapor pressure, and heat of formation. This 
knowledge could be used by scientists and engineers so as to streamline their application which can save 
time and resources. To sum up, Kevlar is rather a scientific wonder that unites mathematics and physics. The 
world that is revealed in its physico-mathematical analysis opens up the world of possibilities, leading to its 
tremendous impact on both the theoretical and practical use. The legacy of Kevlar still exists and continues to 
transform industries as well as redefine what can be done in materials science.

7. CONCLUSION

This study presents a comprehensive analysis of the chemical structure of Kevlar using advanced topological 
co-indices. By translating the molecular architecture into mathematical form, we derived indices that correlate 
with physical properties such as melting point, boiling point, and density. These indices not only enhance our 
theoretical understanding but also have practical relevance in QSAR and QSPR modeling. Our findings offer 
valuable insights into the complex structure of Kevlar, highlighting how topological descriptors reflect its 
unique strength and stability. The tabulated results and graphical representations provide a clear comparative 
framework, supporting further research in materials science.

In essence, this work bridges mathematical graph theory and chemical structure analysis, emphasizing the 
potential of co-indices to predict and explain material behaviour. While this study focuses on Kevlar, the 
methodology holds promise for broader applications to other industrially significant polymers. The journey 
into molecular topology continues, with each index bringing us closer to unlocking the deeper secrets of 
matter.
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