Advancements in Underground Mining Equipment Design: Safety, Finite Element Analysis, and Structural Innovations

Authors

DOI:

https://doi.org/10.63960/synergyint.j.multidiscip.stud..v2i1.30

Keywords:

Safety, Finite Element Analysis, Innovative Design, Automation, Environmental Sustainability

Abstract

This paper discusses improvements to the design of underground mining machines with respect to safety, finite element analysis (FEA), and structure. It illustrates the need to maximize heat and energy use in mining machinery, as shown by research on porous freon steam generators that work better than the old way. The studies also highlight computational modeling in designing structural equipment to overcome operational issues. Additionally, FEA is discussed as an essential resource for modeling complex structures and discovering where failures might occur to bring more reliability and cheaper development. The combination of automation and monitoring systems is also covered and shows how they are reducing the level of risk for humans in high-risk processes and providing safe underground environments through real-time ventilation monitoring. In all, the paper provides a detailed description of how new designs and technologies can be applied to improve the safety and performance of underground mining operations.

Downloads

Download data is not yet available.

References

[1] Dusza-Pilarz, K., Kirej, M., & Jasiołek, J. (2024). Use of laser scanning and 3D software in mining design. E3S Web of Conferences, 526, 1–10. https://doi.org/10.1051/e3sconf/202452601012 DOI: https://doi.org/10.1051/e3sconf/202452601012

[2] Sheshpari, M. (2015). A Review of Underground Mine Backfilling Methods with Emphasis On Cemented Paste Backfill. The Electronic Journal of Geotechnical Engineering (EJGE), 20(13), 5183–5208. https://www.researchgate.net/profile/Morteza-mori-Sheshpari/publication/282307412_A_review_of_underground_mine_backfilling_methods_with_emphasis_on_cemented_paste_backfill/links/5b07c59ba6fdcc8c252cb162/A-review-of-underground-mine-backfilling-methods-with-emphasis-on-cemented-paste-backfill.pdf

[3] Cheban, A. Y., Sekisov, A. G., Khrunina, N. P., & Vasyanovich, Y. A. (2022). COMBINED ORE EXTRACTION TECHNOLOGIES IN THE DEVELOPMENT OF CRYSTAL RAW MATERIAL DEPOSITS. MINING INFORMATION AND ANALYTICAL BULLETIN (SCIENTIFIC AND TECHNICAL JOURNAL), 7, 55–67. https://doi.org/10.25018/0236_1493_2022_7_0_55 DOI: https://doi.org/10.25018/0236_1493_2022_7_0_55

[4] Stratton, C. (2015). Benefits of Fiber Optics for Underground Mine Communications. AFL, 1–5. https://learn.aflglobal.com/white-papers/fiber-optics-for-underground-mine-communications#main-content

[5] Meade, A. (1994). Wagner SAHR braking system. In Northern Engineering Conference 1994: Engineering Delivers Innovation; Transactions. Institution of Engineers, Australia. https://search.informit.org/doi/10.3316/informit.324016979413850

[6] De Cassia Pedrosa Santos, R., Da Silva, J. M., Junior, W. A., Pinto, C. L., Oliveira, M. M., & Mazzinghy, D. B. (2022). Development of a Low-Cost Device for Monitoring Ventilation Parameters (Temperature, Humidity and Pressure) in Underground Environments to Increase Operational Safety Using IoT. Mining, 2(4), 746–756. https://doi.org/10.3390/mining2040041 DOI: https://doi.org/10.3390/mining2040041

[7] Shou-Xi, H. U. (2012). Intrinsic Safety Design of Explosion-proof and Intrinsic Safety Type Electrical Control Box for Underground Mining Equipment. Journal of Mine Automation, 38(5), 83–86. http://www.gkzdh.cn/en/article/id/8375

[8] Cecala, A. B., Organiscak, J. A., Noll, J. D., & Zimmer, J. A. (2016). Comparison of MERV 16 and HEPA filters for cab filtration of underground mining equipment. Mining Engineering, 68(8), 50–56. https://doi.org/10.19150/me.6712 DOI: https://doi.org/10.19150/me.6712

[9] Jun, Z., Jiguo, W., Qianyi, Z., Ning, W., Chaofan, W., & Lei, W. (2022). Design and Workspace Analysis of Drilling Arm of Mining Anchor Drilling Robot. Journal of Physics: Conference Series, 2202, 1–10. https://doi.org/10.1088/1742-6596/2202/1/012057 DOI: https://doi.org/10.1088/1742-6596/2202/1/012057

[10] Nguyen, B. V., Cai, M., & Challagulla, K. (2019). Finite element analysis of the Superbolt under dynamic loading. Ground Support 2019: Proceedings of the Ninth International Symposium on Ground Support in Mining and Underground Construction, 375–386. https://doi.org/10.36487/acg_rep/1925_25_nguyen

[11] Wheatley, G. (2020). Design of a hydraulically controlled conveyor belt clamp for heavy-duty drift belt installation in underground applications: a case study. Journal of Structural Integrity and Maintenance, 5(3), 171–182. https://doi.org/10.1080/24705314.2020.1765267 DOI: https://doi.org/10.1080/24705314.2020.1765267

[12] D, G., & H, O. (2019). Finite element simulation on tensile creep behaviour of underground support liner. Machines. Technologies. Materials., 13(10), 417–420. https://stumejournals.com/journals/mtm/2019/10/417

[13] Xu, W., Wan, L., Gao, K., Bu, Y., Xu, M., Ma, S., & Jiang, K. (2023). Analysis of the Influence of Surrounding Rock State on Working Performance of Cutting Head in Metal Mining. Applied Sciences, 14(1), 1–17. https://doi.org/10.3390/app14010340 DOI: https://doi.org/10.3390/app14010340

[14] Hazegh, M., & Zsaki, A. M. (2012). A framework for automatic modeling of underground excavations and optimizing three‐dimensional boundary and finite element meshes derived from them—framework. International Journal for Numerical and Analytical Methods in Geomechanics, 37(6), 641–660. https://doi.org/10.1002/nag.1130 DOI: https://doi.org/10.1002/nag.1130

[15] Zsáki, A. M., & Curran, J. H. (2005). A continuum mechanics based framework for optimizing boundary and finite element meshes associated with underground excavations—accuracy, efficiency and applications. International Journal for Numerical and Analytical Methods in Geomechanics, 29(13), 1299–1315. https://doi.org/10.1002/nag.460 DOI: https://doi.org/10.1002/nag.460

[16] Zhuravkov, M. A., Nikolaitchik, M. A., & Klimkovich, M. M. (2022). MODELLING OF GEOMECHANICAL STATE OF THE ROCK MASS DURING THE LARGE SCALE MINING OF UNDERGROUND SPACE. Mechanics of Machines, Mechanisms and Materials, 4(61), 97–104. https://doi.org/10.46864/1995-0470-2022-4-61-97-104 DOI: https://doi.org/10.46864/1995-0470-2022-4-61-97-104

[17] Mališ, T., Hrženjak, P., Lazarević, A. J., & Mikulec, M. (2023). APPLICATION OF THE SAP2000 COMPUTER PROGRAMME IN THE MODELLING OF AN UNDERGROUND QUARRY OF DIMENSION STONE. Rudarsko-geološko-naftni Zbornik, 38(4), 19–25. https://doi.org/10.17794/rgn.2023.4.2 DOI: https://doi.org/10.17794/rgn.2023.4.2

[18] Nigam, A., & Jain, S. (2014). Design and Analysis of Housing Foot of a Planetary Gearbox Using Finite Element Analysis. International Journal of Research in Manufacturing Technology & Management, 2(2), 01–05. https://iaeme.com/MasterAdmin/Journal_uploads/IJRMTM/VOLUME_2_ISSUE_2/IJRMTM_02_02_001.pdf

[19] Sirota, V. V., Zaitsev, S. V., Churikov, A. S., & Egorkin, V. S. (2024). Protection of mining equipment parts operating in underground mining conditions from biocorrosion. Sustainable Development of Mountain Territories, 16(2), 545–557. https://doi.org/10.21177/1998-4502-2024-16-2-545-557 DOI: https://doi.org/10.21177/1998-4502-2024-16-2-545-557

[20] Samanta, B. K. (2017). Underground Mining Project Equipment Selection Model. International Journal of Computer Trends and Technology, 44(1), 50–57. https://doi.org/10.14445/22312803/ijctt-v44p110 DOI: https://doi.org/10.14445/22312803/IJCTT-V44P110

[21] Chehri, A., & Fortier, P. (2020). Autonomous Vehicles in Underground Mines, Where We Are, Where We Are Going? 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), 1–5. https://doi.org/10.1109/vtc2020-spring48590.2020.9128585 DOI: https://doi.org/10.1109/VTC2020-Spring48590.2020.9128585

[22] Desire, E., Nadeau, S., & Boudreau-Trudel, B. (2015). Design of control panels for underground mining equipment: Why open innovation should be promoted as a sustainable approach to development. Espace ÉTS. https://espace2.etsmtl.ca/id/eprint/10473/

[23] Grenon, M., Caron, A., Karampinos, E., & Dorion, J. F. (2023). Towards an Efficient iPad-Based LiDAR Structural Mapping Methodology for Underground Mines. All Days. https://doi.org/10.56952/arma-2023-0741 DOI: https://doi.org/10.56952/ARMA-2023-0741

[24] Song, W., Zhang, J., Li, M., Yan, H., Zhou, N., Yao, Y., & Guo, Y. (2022). Underground Disposal of Coal Gangue Backfill in China. Applied Sciences, 12(23), 1–18. https://doi.org/10.3390/app122312060 DOI: https://doi.org/10.3390/app122312060

[25] Carroll Technologies Group. (2021). We Make North American Industry Safer. Carroll Technologies. Retrieved November 29, 2024, from https://www.carrolltechnologiesgroup.com/?srsltid=AfmBOorterhMVl21uB1CC6HPJZQQkSNfVdBEMDlyBsbfUlChAq7HdLPs

[26] MineARC Systems. (2020). Advanced Chamber Tech, Safe refuge solutions. Retrieved November 29, 2024, from https://minearc.com/

[27] Roan, A. J. (2024). 10 new mining safety technologies emerge. Metal Tech News. Retrieved November 29, 2024, from https://www.metaltechnews.com/story/2024/07/17/mining-tech/10-new-mining-safety-technologies-emerge/1847.html

[28] Predictive Engineering. (n.d.). FEA Consulting Services. Retrieved November 29, 2024, from https://www.predictiveengineering.com/consulting/fea-consulting-services

[29] Friedman Research Corporation. (n.d.). Friedman Research are experts in finite element analysis, virtual testing and re. Retrieved November 29, 2024, from https://www.friedmanresearch.com/

[30] Acuren. (2023). Finite Element Analysis and Computational Mechanics. Retrieved November 29, 2024, from https://www.acuren.com/engineering/materials-engineering/finite-element-analysis-and-computational-mechanics/

[31] Finite Engineering Associates 3D, LLC. (2024). Mining Equipment Design Engineers in Kansas City, MO. Retrieved November 29, 2024, from https://www.fea3d.com/industries/mining

[32] ProForma Engineering. (2021). Finite Element Analysis (Simulation). Retrieved November 29, 2024, from https://www.proformaengineering.com/finite-element-analysis-simulation/

[33] Admin. (2020). The Latest Innovations in Underground Mining Equipment. Mining Digital. Retrieved November 29, 2024, from https://miningdigital.com/digital-mining/latest-innovations-underground-mining-equipment

[34] Komatsu. (2021). Underground hard rock mining. Retrieved November 29, 2024, from https://www.komatsu.com/en/industries/underground-hard-rock-mining/

[35] Adjiski, V., Despodov, Z., Mirakovski, D., & Serafimovski, D. (2019). SYSTEM ARCHITECTURE TO BRING SMART PERSONAL PROTECTIVE EQUIPMENT WEARABLES AND SENSORS TO TRANSFORM SAFETY AT WORK IN THE UNDERGROUND MINING INDUSTRY. Rudarsko-geološko-naftni Zbornik, 34(1), 37–44. https://doi.org/10.17794/rgn.2019.1.4 DOI: https://doi.org/10.17794/rgn.2019.1.4

[36] Li, C., Gao, Z., Sheng, Z., Wu, W., Xu, D., & Ming, Z. (2020). Key Technology Simulation of Equipment Anomaly Detection Based on Image Processing In Underground Mining. 2020 IEEE 5th Information Technology and Mechatronics Engineering Conference (ITOEC), 145–148. https://doi.org/10.1109/ITOEC49072.2020.9141714 DOI: https://doi.org/10.1109/ITOEC49072.2020.9141714

[37] Rudakov, M. L., KOLVAKH, K. A., & DERKACH, I. V. (2020). Assessment of Environmental and Occupational Safety in Mining Industry during Underground Coal Mining. Journal of Environmental Management and Tourism (JEMT), 11(3(43)), 579–588. https://doi.org/10.14505/JEMT.V11.3(43).10 DOI: https://doi.org/10.14505//jemt.v11.3(43).10

[38] Alam, S. M. M., Barua, A., Raihan, A., Alam, M. J., Chakma, R., Mahtab, S. S., & Biswas, C. (2021). Design and Implementation of a Smart Helmet System for Underground Miner’s Safety. In Lecture notes in electrical engineering (Vol. 733, pp. 301–311). https://doi.org/10.1007/978-981-33-4909-4_22 DOI: https://doi.org/10.1007/978-981-33-4909-4_22

[39] Sarkar, F., Adhikari, P. K., & Mangal, A. (2021). Development of a Hybrid Type Mine Hazard Alert System (MHAS) for Inhibiting the Disastrous Incidences Due to Fire Hazards, Water Inrush and Strata Failure in Underground Mines: An Experimental Trial. Journal of the Institution of Engineers (India): Series D, 102, 39–46. https://doi.org/10.1007/s40033-021-00260-7 DOI: https://doi.org/10.1007/s40033-021-00260-7

[40] Fayyaz, B., Shah, U. A., & Zubair, M. (2021). Smart Safety Helmet for Safe Coal Mining. Journal of Independent Studies and Research Computing, 19(1), 12–15. https://doi.org/10.31645/jisrc.21.19.1.8 DOI: https://doi.org/10.31645/JISRC.35.19.1.8

[41] Nikitenko, S. I., Kubrin, S. S., & Malakhov, Y. L. (2022). Safety ensuring in the implementation of new technologies for tunneling and production faces. Sustainable Development of Mountain Territories, 14(4), 615–622. https://doi.org/10.21177/1998-4502-2022-14-4-615-622 DOI: https://doi.org/10.21177/1998-4502-2022-14-4-615-622

[42] Xu, Q. (2022). Design of Accurate Intelligent Positioning System through UWB Technology. 2022 IEEE 4th International Conference on Civil Aviation Safety and Information Technology (ICCASIT), 43, 300–304. https://doi.org/10.1109/iccasit55263.2022.9986850 DOI: https://doi.org/10.1109/ICCASIT55263.2022.9986850

[43] Qian, M., Zhao, K., Li, B., Gong, H., & Seneviratne, A. (2022). Survey of Collision Avoidance Systems for Underground Mines: Sensing Protocols. Sensors, 22(19), 1–33. https://doi.org/10.3390/s22197400 DOI: https://doi.org/10.3390/s22197400

[44] Miao, L., & Niu, Y. (2022). Coal mine electrical safety management and accident prevention based on neural network and signal processing. Journal of Computational Methods in Sciences and Engineering, 22(6), 2257–2266. https://doi.org/10.3233/jcm-226370 DOI: https://doi.org/10.3233/JCM-226370

[45] Chaitanya, A., Rahul, P., Siddhartha, A., & Dholvan, M. (2023). IoT-Based Mining Safety and Air QuBlynk System. Journal of Telecommunication Electronic and Computer Engineering (JTEC), 15(4), 1–6. https://doi.org/10.54554/jtec.2023.15.04.001 DOI: https://doi.org/10.54554/jtec.2023.15.04.001

[46] Cholke, P., Kulkarni, M., Gangurde, J., Thakare, K., Waware, R., More, S., & Ghuge, A. (2023). IOT Empowered Helmets: Pioneering Safety in the Mining Sector. International Journal on Recent and Innovation Trends in Computing and Communication, 11(10), 1102–1107. https://doi.org/10.17762/ijritcc.v11i10.8630 DOI: https://doi.org/10.17762/ijritcc.v11i10.8630

[47] He, S., He, X., Mitri, H., Meng, S., Wu, Q., Ren, T., & Liu, S. (2023). Advances in mining safety theory, technology, and equipment. ADVANCES IN GEO-ENERGY RESEARCH, 10(2), 71–76. https://doi.org/10.46690/ager.2023.11.01 DOI: https://doi.org/10.46690/ager.2023.11.01

[48] S, M. S., Rahul, K., Kurian, N. S., V, H. V., & M, A. (2023). Smart PPE using LoRaWAN Technology. 2022 International Conference on Inventive Computation Technologies (ICICT), 1272–1279. https://doi.org/10.1109/icict57646.2023.10134134 DOI: https://doi.org/10.1109/ICICT57646.2023.10134134

[49] Reshotka, V., & Tkalych, I. (2023). SAFETY AND WORK ORGANIZATION DURING THE ASSEMBLY OF VIBRATING DELIVERY AND LOADING EQUIPMENT IN THE MINING INDUSTRY. Labour Protection Problems in Ukraine, 39(3–4), 55–58. https://doi.org/10.36804/nndipbop.39-3-4.2023.55-58 DOI: https://doi.org/10.36804/nndipbop.39-3-4.2023.55-58

[50] Vishwakarma, A., Yash, A., Singh, A., Awasthi, D., & Yadav, R. (2024). IOT Mining Tracking & Worker Safety Helmet. International Journal for Research in Applied Science and Engineering Technology (IJRASET), 12(5), 5310–5321. https://doi.org/10.22214/ijraset.2024.62778 DOI: https://doi.org/10.22214/ijraset.2024.62778

[51] Dange, V., Bari, R., Bambal, S., Barde, K., & Bapat, A. (2024). An Approach to Design a Smart Mining Helmet. 2024 International Conference on Intelligent Systems for Cybersecurity (ISCS), 1–6. https://doi.org/10.1109/iscs61804.2024.10581270 DOI: https://doi.org/10.1109/ISCS61804.2024.10581270

[52] Pääkkönen, P., Horsmanheimo, S., Pakkala, D., Tuomimäki, L., & Backman, J. (2024). Reference architecture design and evaluation for digitalization of underground mining. Internet of Things, 26, 1–28. https://doi.org/10.1016/j.iot.2024.101238 DOI: https://doi.org/10.1016/j.iot.2024.101238

[53] Klyuev, R. V., & Gavrilova, A. A. (2024). Ensuring Occupational Safety of Miners by Improving Power Grids for Underground Ore Mining. Occupational Safety in Industry, 6, 72–78. https://doi.org/10.24000/0409-2961-2024-6-72-78 DOI: https://doi.org/10.24000/0409-2961-2024-6-72-78

[54] Zhang, W. (2024). Research On the Application of Intelligent Technology in Mining Safety Monitoring. Highlights in Science, Engineering and Technology, 106, 565–569. https://doi.org/10.54097/ct50qe50 DOI: https://doi.org/10.54097/ct50qe50

[55] He, S., Zhao, D., Gao, N., Nie, W., Tong, L., & Wang, C. (2024). Progress and prospects of mining disaster prevention techniques and equipment. ADVANCES IN GEO-ENERGY RESEARCH, 13(3), 166–168. https://doi.org/10.46690/ager.2024.09.02 DOI: https://doi.org/10.46690/ager.2024.09.02

[56] Nguyen, B., Cai, M., & Challagulla, K. (2019). Finite element analysis of the Superbolt under dynamic loading. Ground Support 2019: Proceedings of the Ninth International Symposium on Ground Support in Mining and Underground Construction, 375–386. https://doi.org/10.36487/acg_rep/1925_25_nguyen DOI: https://doi.org/10.36487/ACG_rep/1925_25_Nguyen

[57] Rosero, D. G., & Zsaki, A. M. (2020). Finite element mesh improvement using an a priori local p-refinement for stress analysis of underground excavations. Cogent Engineering, 7(1), 1–24. https://doi.org/10.1080/23311916.2020.1769287 DOI: https://doi.org/10.1080/23311916.2020.1769287

[58] Ibrahim, R., Mirhosseini, F., & Zsáki, A. M. (2020). An automated a priori knowledge-based p-adaptive three-dimensional finite element mesh improvement method for stress analysis of underground excavations with prismatic cross-sections. Geomechanics and Geoengineering, 17(1), 141–154. https://doi.org/10.1080/17486025.2020.1716081 DOI: https://doi.org/10.1080/17486025.2020.1716081

[59] Wang, L., He, C., Cui, S., & Wang, F. (2021). Numerical Simulation of Surface Movement and Deformation Caused by Underground Mining with Complex Stratigraphic Boundary. Advances in Civil Engineering, 2021, 1–14. https://doi.org/10.1155/2021/9967071 DOI: https://doi.org/10.1155/2021/9967071

[60] Dmitriev, S., Semenova, I., & Shestov, A. (2021). The numerical modeling of heterogeneities by the finite element method in 3D setting. IOP Conference Series: Earth and Environmental Science, 833, 1–8. https://doi.org/10.1088/1755-1315/833/1/012094 DOI: https://doi.org/10.1088/1755-1315/833/1/012094

[61] Rotkegel, M., Korol, J., & Sobczak, D. (2021). Analysis of the Possibilities of Using Composite Structural C-Channels as Lining for an Arch Support in Mining Excavation. Archives of Mining Sciences, 66(3), 437–455. https://doi.org/10.24425/ams.2021.138599 DOI: https://doi.org/10.24425/ams.2021.138599

[62] Berdoudi, S., Morsli, M. a. R., Mekti, Z., & Benselhoub, A. (2022). Numerical study on deformation around underground mining structures (Algeria). Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 6, 47–51. https://doi.org/10.33271/nvngu/2022-6/047 DOI: https://doi.org/10.33271/nvngu/2022-6/047

[63] Batsaikhan, U., Hashikawa, H., Shimada, H., Sasaoka, T., & Hamanaka, A. (2022). Numerical Study on the Applicability of the Pipe-Jacking Method for the Main Gate of an Underground Coal Mining in Weak Rock Mass. Applied Sciences, 12(3), 1–13. https://doi.org/10.3390/app12031719 DOI: https://doi.org/10.3390/app12031719

[64] Hu, S., Su, C., Zhang, H., Cao, E., Yuan, R., & Xu, Y. (2022). Analysis of Structural Characteristics of Underground Cavern Group by Simulating All Cavern Excavation. Advances in Civil Engineering, 2022, 1–16. https://doi.org/10.1155/2022/4610557 DOI: https://doi.org/10.1155/2022/4610557

[65] Bernuzzi, C., Bertinotti, E., Frau, M., & Simoncelli, M. (2022). Derrick crane robustness scenarios. Istrazivanja I Projektovanja Za Privredu, 20(2), 523–536. https://doi.org/10.5937/jaes0-34255 DOI: https://doi.org/10.5937/jaes0-34255

[66] Guo, Y., Qian, Z.-K., & Huang, H.-Z. (2023). Transient dynamic finite element analysis and reliability assessment of mining excavators gear transmission system. IET Conference Proceedings., 2023(9), 747–751. https://doi.org/10.1049/icp.2023.1724 DOI: https://doi.org/10.1049/icp.2023.1724

[67] Dönmez, H. O., & Tunçdemir, H. (2023). Estimating support pressure with finite element and convergence-confinement method for different rock masses. Bilimsel Madencilik Dergisi, 62(3), 99–108. https://doi.org/10.30797/madencilik.1356042 DOI: https://doi.org/10.30797/madencilik.1356042

[68] Ilyasov, B. T., Kulsaitov, R. V., Neugomonov, S. S., & Soluyanov, N. O. (2023). Stability estimation in underground opening with support system using finite–discrete element method-based modeling. Gornyi Zhurnal, 1, 118–123. https://doi.org/10.17580/gzh.2023.01.20 DOI: https://doi.org/10.17580/gzh.2023.01.20

[69] Liang, J., Tian, M., & Huo, P. (2023). Finite element simulation study on cutting coal and rock by cutting head of roadheader. Journal of Physics: Conference Series, 2591, 1–9. https://doi.org/10.1088/1742-6596/2591/1/012016 DOI: https://doi.org/10.1088/1742-6596/2591/1/012016

[70] Diulin, D. A., Prushak, V. Y., & Gegedesh, M. G. (2023). Analysis of the stress-strain state of problematic sections of the shaft of the mine using computer simulation. Doklady of the National Academy of Sciences of Belarus, 67(4), 322–330. https://doi.org/10.29235/1561-8323-2023-67-4-322-330 DOI: https://doi.org/10.29235/1561-8323-2023-67-4-322-330

[71] Mai, L., & Li, H. (2024). Finite–Discrete Element Method Simulation Study on Development of Water-Conducting Fractures in Fault-Bearing Roof under Repeated Mining of Extra-Thick Coal Seams. Sustainability, 16(12), 1–24. https://doi.org/10.3390/su16125177 DOI: https://doi.org/10.3390/su16125177

[72] Downey, N. (2024). Finite element modeling of infrasound resonance in an underground tunnel structure. The Journal of the Acoustical Society of America, 155(3_Supplement), A71. https://doi.org/10.1121/10.0026841 DOI: https://doi.org/10.1121/10.0026841

[73] Wu, J., Zhuo, L., Pei, J., Li, Y., Xie, H., Wu, J., & Liu, H. (2024). Modularized and Parametric Modeling Technology for Finite Element Simulations of Underground Engineering under Complicated Geological Conditions. Computer Modeling in Engineering & Sciences, 140(1), 621–645. https://doi.org/10.32604/cmes.2024.046398 DOI: https://doi.org/10.32604/cmes.2024.046398

[74] Wang, W., Gao, X., Ding, Z., Ma, H., Ren, J., & Liu, Z. (2024). Fracture characteristic and support effect around deep lined tunnels using CGP-FDEM simulation and field investigation analysis. Engineering Analysis With Boundary Elements, 161, 29–47. https://doi.org/10.1016/j.enganabound.2024.01.012 DOI: https://doi.org/10.1016/j.enganabound.2024.01.012

[75] Jialin, F. (2024). Structural Optimization of 60T Electric Mining Vehicle Frame: Finite Element Simulation Model and Analysis. Journal of Engineering Research and Reports, 26(5), 262–272. https://doi.org/10.9734/jerr/2024/v26i51152 DOI: https://doi.org/10.9734/jerr/2024/v26i51152

[76] Sun, X., Sui, Y., Zheng, Y., Wang, L., & Zhu, H. (2024). Finite element analysis and optimization design of large vibrating screen based on equivalent static load method. Engineering Research Express, 6, 1–16. https://doi.org/10.1088/2631-8695/ad3520 DOI: https://doi.org/10.1088/2631-8695/ad3520

[77] Xue, H., Gao, Y., Zhang, X., Tian, X., Wang, H., & Yuan, D. (2019). Directional Blasting Fracturing Technology for the Stability Control of Key Strata in Deep Thick Coal Mining. Energies, 12(24), 1–19. https://doi.org/10.3390/en12244665 DOI: https://doi.org/10.3390/en12244665

[78] Sokolov, I. V., Antipin, Y. G., Gobov, N. V., & Nikitin, I. V. (2020). Experience in the development of innovative underground geotechnologies for mining of ore deposits. MINING INFORMATIONAL AND ANALYTICAL BULLETIN, 3–1, 338–350. https://doi.org/10.25018/0236-1493-2020-31-0-338-350 DOI: https://doi.org/10.25018/0236-1493-2020-31-0-338-350

[79] Kaplunov, D. R., Radchenko, D., Fedotenko, V. S., & Lavenkov, V. S. (2020). Assessment of efficiency of transition to a new wave of technological innovation in underground mining during is continuous progression to deeper levels. MINING INFORMATIONAL AND ANALYTICAL BULLETIN, 12, 5–15. https://doi.org/10.25018/0236-1493-2020-12-0-5-15 DOI: https://doi.org/10.25018/0236-1493-2020-12-0-5-15

[80] Zhao, H., Ren, T., & Remennikov, A. (2021). Hybrid roof standing supports in underground mining: concept and behaviour. Geomechanics and Geoengineering, 17(6), 1707–1721. https://doi.org/10.1080/17486025.2021.1961025 DOI: https://doi.org/10.1080/17486025.2021.1961025

[81] Zhang, Z., Chen, H., Li, D., & Zhang, Z. (2021). Stability Control of the Equipment Recovery Passage in a Fully Mechanized Longwall Mining: Case Study. Geotechnical and Geological Engineering, 39(2), 799–813. https://doi.org/10.1007/s10706-020-01522-z DOI: https://doi.org/10.1007/s10706-020-01522-z

[82] Zhao, C., Sun, X., Zhang, Y., Zhang, S., & Zhang, J. (2021). Optimization analysis of NPR cable support considering bearing structure in the NSF condition of deep shaft based on Daqiang coal mine. Arabian Journal of Geosciences, 14, 1942. https://doi.org/10.1007/s12517-021-08274-x DOI: https://doi.org/10.1007/s12517-021-08274-x

[83] Zhang, B., & Zhao, H. (2022). An Innovative Tubular Standing Support Incorporating PVC and FRP Composites: Laboratory Tests. Geotechnical and Geological Engineering, 40, 249–258. https://doi.org/10.1007/s10706-021-01895-9 DOI: https://doi.org/10.1007/s10706-021-01895-9

[84] Wojtas, M., Kazubiński, D., & Pilarz, K. (2022). An innovative crossing powered support of the HENNLICH-20/43-CH type. Mininig - Informatics, Automation and Electrical Engineering, 2(550), 7–11. https://doi.org/10.7494/miag.2022.2.550.7 DOI: https://doi.org/10.7494/miag.2022.2.550.7

[85] Oryngozhin, Y. S., Bitimbaev, M. Z., Milеtenko, N. A., & Alisheva, Z. N. (2022). An innovative way of underground mining. Eurasian Mining, 1, 38–40. https://doi.org/10.17580/em.2022.01.07 DOI: https://doi.org/10.17580/em.2022.01.07

[86] András, J., Kovács, J., & András, E. (2022). New Trends in Mining Equipment Design. Műszaki Tudományos Közlemények, 16, 10–14. https://doi.org/10.33894/mtk-2022.16.03 DOI: https://doi.org/10.33895/mtk-2022.16.03

[87] Florea, V. A., Toderaș, M., & Itu, R.-B. (2023). Assessment Possibilities of the Quality of Mining Equipment and of the Parts Subjected to Intense Wear. Applied Sciences, 13(6), 1–22. https://doi.org/10.3390/app13063740 DOI: https://doi.org/10.3390/app13063740

[88] Liu, Y., Zhao, Y., Wang, K., Li, G., & Ge, Z. (2023). Protection Technique of Support System for Dynamic Disaster in Deep Underground Engineering: A Case Study. Sustainability, 15(9), 1–13. https://doi.org/10.3390/su15097165 DOI: https://doi.org/10.3390/su15097165

[89] Aboelezz, A., Wetz, D., Lehr, J., Roghanchi, P., & Hassanalian, M. (2023). Intrinsically Safe Drone Propulsion System for Underground Coal Mining Applications: Computational and Experimental Studies. Drones, 7(1), 1–23. https://doi.org/10.3390/drones7010044 DOI: https://doi.org/10.3390/drones7010044

[90] Mishra, A. K. (2023). Mass Production Technologies for Underground Coal Mining in India: Status, Challenges, and Prospects. In Springer proceedings in earth and environmental sciences (pp. 53–72). https://doi.org/10.1007/978-3-031-46966-4_5 DOI: https://doi.org/10.1007/978-3-031-46966-4_5

[91] A.P., L., М.A., L., & M.V., K. (2023). Improvement of thermal-hydraulic efficiency of mining power equipment through the application of porous freon steam generators with high heat conductivity. Geo-Technical Mechanics, 164, 45–52. https://doi.org/10.15407/geotm2023.164.045 DOI: https://doi.org/10.15407/geotm2023.164.045

[92] Wang, S.-F., Wu, Y.-M., & Shi, X.-L. (2024). Non-explosive mechanized and intelligent mining/heading in underground mine. Transactions of Nonferrous Metals Society of China, 34(1), 265–282. https://doi.org/10.1016/s1003-6326(23)66397-6 DOI: https://doi.org/10.1016/S1003-6326(23)66397-6

[93] Nikitenko, S., Nikitenko, M., Kizilov, S., & Khudonogov, D. (2024). Robotic walking module as underground mining safety device. E3S Web of Conferences, 498, 1–8. https://doi.org/10.1051/e3sconf/202449803014 DOI: https://doi.org/10.1051/e3sconf/202449803014

[94] Shalomeev, V., Brykov, M., Sheiko, S., Matiukhin, A., Yepishkin, O., Kulabnieva, O., & Tytov, O. (2024). The durability increasing of high-wear cast parts of mining and processing equipment. IOP Conference Series: Earth and Environmental Science, 1348, 1–13. https://doi.org/10.1088/1755-1315/1348/1/012054 DOI: https://doi.org/10.1088/1755-1315/1348/1/012054

[95] Herasymenko, A., Shyrin, A., Inyutkin, I., & Dyachkov, P. (2024). Justification of the area of efficient use of mining transportation equipment for quick conduct of preparatory works. Collection of Research Papers of the National Mining University, 76, 20–32. https://doi.org/10.33271/crpnmu/76.020 DOI: https://doi.org/10.33271/crpnmu/76.020

[96] Xiao, Z., Zhang, Y., Hu, S., Zhang, F., Jiang, J., Wang, H., & Li, J. (2024). Structural Design and Analysis of Large-Diameter D30 Conical Polycrystal Diamond Compact (PDC) Teeth under Engineering Rotary Mining Conditions. Materials, 17(2), 1–14. https://doi.org/10.3390/ma17020477 DOI: https://doi.org/10.3390/ma17020477

[97] Liu, X., Zhang, X., Wang, L., Qu, F., Shao, A., Zhao, L., Wang, H., Yue, X., Li, Y., Yan, W., & He, J. (2024). Research progress and prospects of intelligent technology in underground mining of hard rock mines. Green and Smart Mining Engineering, 1(1), 12–26. https://doi.org/10.1016/j.gsme.2024.03.007 DOI: https://doi.org/10.1016/j.gsme.2024.03.007

Downloads

Published

2025-03-07

How to Cite

Koul, P. (2025). Advancements in Underground Mining Equipment Design: Safety, Finite Element Analysis, and Structural Innovations. Synergy: International Journal of Multidisciplinary Studies, 2(1), 24–43. https://doi.org/10.63960/synergyint.j.multidiscip.stud.v2i1.30

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.